

LiDCO Bunity

One hemodynamic monitor for the entire patient pathway

LiDCOgunity

From the ED to the OR to Critical Care and other High Care departments. LiDCOunity has the flexibility to enable continuity of measurement across patient acuity levels

Emergency Department

Operating Room

One Disposable

Other Patient Settings

One Monitor

Hemodynamic
Monitoring
for the whole
patient pathway

Non-Invasive
Minimally Invasive
Calibrated

Critical Care

LiDCO@unity

25 0 - Insule

One Monitor

LiDCO rapid Minimally Invasive

- · Plug and play from existing vital signs monitor
- Arterial line input without needing to change your pressure transducer
- Validated PulseCO[™] algorithm reliably tracks hemodynamic changes in the presence of inotropes and vasoactive drugs
- Beat-to-beat analysis and display of hemodynamic parameters

LiDCO+plus Ability to Calibrate

- · Continuous real-time measurement with lower risk and high precision
- Calibrate using LiDCO Lithium technology or another absolute cardiac output measurement value
- · Reduced infection risk with less invasive catheters

LiDCOncnap Non-Invasive

- Quick and easy to set-up
- Real-time continuous non-invasive blood pressure (CNAP™) and hemodynamic parameters
- Proven to be as effective as an arterial line to monitor fluids when used with the PulseCOTM algorithm
- Dual finger sensor with automatic finger switching for safer non-invasive use

One Disposable

- Switch monitoring seamlessly with one disposable Smartcard
- Smartcard carries key patient information between different LiDCO Monitors to ease set-up and monitoring

LiDCO unity

LiDCOgunity

Designed to support your clinical decision making

Long Term Trend

Easy interpretation of trends from the start of monitoring, which can be customised to the parameters you need

Short Term Trend

2 minute window for greater focus on the immediate response to interventions

Event Response

Marking and monitoring events like a fluid challenge

Preload Response

Window displays preload response values or volume status indicators of: Pulse Pressure Variation (PPV%) and Stroke Volume Variation (SVV%)

Flexibility of displays to meet your needs

History Screen

Touch on any point of the history to review hemodynamic values and review key events

Target Screen

The Target Screen plots three key hemodynamic parameters against each other. This screen may be particularly helpful when implementing Goal Directed Therapy protocols

Physiology Screen

Averaged values (20 seconds) are displayed for easy reading and recording. Key physiological targets and event responses are shown too

Chart Screen

Numeric data display to assist in recording values for routine clinical charts. The Chart Screen displays all absolute and index values

At the heart of recovery

LiDCOgunity

Benefits of using LiDCO technology

Safe

Dual finger sensor for non-invasive use

Clinically Proven

Over 200 Clinical studies and 15 meta analyses demonstrating improved outcomes

Reduced Infection Risks

Calibrated cardiac outcomes from existing arterial and venous catheters

Portable

Battery options for remote monitoring, patient transfer and rapid response.

Unique

Switch non-invasive to min-invasive monitoring seamlessly with one disposable Smartcard

Multi-modal

Incorporate depth of anaesthesia monitoring

Connected

Connectivity with industry standard HL7 information system

Cost Effective and Green

One Monitor, One Disposable, One patient cost across entire clinical pathway

Simplified Lithium Dilution Calibration

- · Only validated dye dilution technique using any arterial line and any venous access
- Minimally invasive reduces infection risk
- Safe and accurate

Proven to enhance your patients recovery 15 meta-analysis confirm clinical benefit

References	Reduction In	Average odd or risk ratios (confidence interval)	Number of studies
Ripollésa J, Espinosa A, Martínez-Hurtado M, et al. Intraoperative goal directed hemodynamic therapy in non-cardiac surgery: a systematic review and meta-analysis. Journal of Clinical Anesthesia 2016 Feb; 28: 105–115.	Mortality rate	0.63 (CI: 0.42-0.94)	12
Corcoran T. et al. Perioperative Fluid Management Strategies in Major Surgery: A Stratified Meta-Analysis. Anesthesia -Analgesia 2012; 114(3): 640-651.	Acute kidney injury Pneumonia	0.67 (0.46-0.98) 0.74 (0.57-0.96)	23
Gurgel ST, do Nascimento Jr. P. Maintaining Tissue Perfusion in High-Risk Surgical Patients: A Systematic Review of Randomized Clinical Trials. 2011 International Anesthesia Research Society. DOI: 10.1213/ANE.Ob013e3182055384.	Mortality Organ dysfunction	0.67 (0.55-0.82) 0.62 (0.55-0.70)	32
Aya HD, Cecconi M, Hamilton M, et al. Goal directed therapy in cardiac surgery: a systematic review and meta-analysis. British Journal of Anaesthesia, 2013 Apr;110(4):51D-7.	Postoperative complications Hospital length of stay	0.33 (Cl: 0.15-0.73) -2.44 (Cl: -4.03 to -0.84)	5
Phan T. Ismail H, Heriot AG, et al. Improving Perioperative Outcomes: Fluid Optimization with the Esophageal Doppler Monitor, a meta-analysis and Review. Journal of the American College of Surgeons, 2008 Dec;207(6):935-41.	Length of stay Postoperative morbidity	-2.34 (CI: -2.91 to -1.77) 0.37 (CI: 0.27-0.50)	9
Arulkumaran N, Corredor C, Hamilton MA, et al. Cardiac complications associated with goal-directed therapy in high-risk surgical patients: a meta-analysis. British Journal of Anaesthesia 2014 Apr;112(4):648-59.	Cardiovascular complications Arrythmias	0.54 (Cl: 0.38-0.76) 0.54 (Cl: 0.35-0.85)	22
Cecconi M, Corredor C, Arulkumaran N, et al. Clinical review: Goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Critical Care Medicine 2013, 17:209.	Complications	0.45 (Cl: 0.34-Q.60)	32
Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Critical Care Medicine 2011; 15(3): R154.	Surgical site infection Urinary tract infection Pneumonia	0.58 (0.46-0.74) 0.44 (0.22-0.88) 0.71 (0.55-0.92)	26
Grocott MP, Dushianthan A, Hamiltom MA. et al. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane systematic review British Journal of Anaesthesia 2013;111(4):535-548.	Acute kidney injury Surgical site infection Respiratory failure Total morbidity rate	0.71 (0.57-0.90) 0.65 (0.50-0.84) 0.51 (0.28-0.93) 0.68 0.58-0.80	31
Srinivasa S, Taylor MH, Sammour T, et al. Oesophageal Doppler-guided fluid administration in colorectal surgery: critical appraisal of published clinical trials. Acta Anaesthesiologica Scandinavica 2011; 55(1): 4-13.	Tissue hypoxia	NA	5
Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high risk surgical patients. Anesthesia -Analgesia 2011; 112: 1392-402.	Total morbidity rate	0.44 (0.35-0.55)	29
Brienza N, Giglio MT, Marucci M, et al. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Critical Care Medicine 2009;37:2079-90.	Acute kidney injury	0.64 (0.50-0.83)	20
Poeze M, Willem M Greve J, Ramsay G. Meta-analysis of hemodynamic optimization: relationship to methodological quality. Critical Care 2005, 9:R771-R779.	Mortality rate	0.61 (0.46-0.81)	30
Giglio MT, Marucci M, Testini M, et al. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. British Journal of Anaesthesia; 2009;103(5):637-646.	Minor gastrointestinal complication Major gastrointestinal complication	0.29 (0.17-0.50) 0.42 (0.27-0.65)	16
Bundgaard-Nielsen M, Holte K, Secher NH, et al. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiologica Scandinavica 2007 Mar;51(3):331-40.	Hospital length of stay Post-op nausea & vomiting Total morbidity rate	NA	9

LiDCO unity

At the heart of recovery

LiDCO unity

Contact us to arrange

✓ Product Evaluations
✓ Adoption
✓ Training
✓ Education

UK, Europe & ROW Sales

Tel: +44 (0) 20 7749 1500 Email: info@lidco.com

USA Sales

Toll Free: 877-LiDCO11 (877-543-2611)

Email: usinfo@lidco.com

